Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.19.476693

ABSTRACT

Viruses evade the innate immune response by suppressing the production or activity of cytokines such as type I interferons (IFNs). Here we report the discovery of a novel mechanism by which the SARS-CoV-2 virus co-opts an intrinsic cellular machinery to suppress the production of the key immunostimulatory cytokine IFN-{beta}. We reveal that the SARS-CoV-2 encoded Non-Structural Protein 2 (NSP2) directly interacts with the cellular GIGYF2 protein. This interaction enhances the binding of GIGYF2 to the mRNA cap-binding protein 4EHP, thereby repressing the translation of the Ifnb1 mRNA. Depletion of GIGYF2 or 4EHP significantly enhances IFN-{beta} production, leading to reduced viral infection. Our findings reveal a new target for rescuing the antiviral innate immune response to SARS-CoV-2 and other RNA viruses.


Subject(s)
Virus Diseases
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.21.392670

ABSTRACT

Poor outcomes after SARS-CoV-2 infection are difficult to predict. Survivors may develop pulmonary fibrosis. We previously identified a 52-gene signature in peripheral blood, predictive of mortality in Idiopathic Pulmonary Fibrosis. In this study, we analyzed this signature in SARS-CoV-2 infected individuals and identified genomic risk profiles with significant differences in outcomes. Analysis of single cell expression data shows that monocytes, red blood cells, neutrophils and dendritic cells are the cellular source of the high risk gene signature.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Pulmonary Fibrosis , Idiopathic Pulmonary Fibrosis
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.22.20236554

ABSTRACT

Curtailing the Spring 2020 COVID-19 surge required sweeping and stringent interventions by governments across the world. Wastewater-based COVID-19 epidemiology programs have been initiated in many countries to provide public health agencies with a complementary disease tracking metric and facile surveillance tool. However, their efficacy in prospectively capturing resurgence following a period of low prevalence is unclear. In this study, the SARS-CoV-2 viral signal was measured in primary clarified sludge harvested every two days at the City of Ottawas water resource recovery facility during the summer of 2020, when clinical testing recorded daily percent positivity below 1%. In late July, increases of >400% in normalized SARS-CoV-2 RNA signal in wastewater were identified 48 hours prior to reported >300% increases in positive cases that were retrospectively attributed to community-acquired infections. During this resurgence period, SARS-CoV-2 RNA signal in wastewater preceded the reported >160% increase in community hospitalizations by approximately 96 hours. This study supports wastewater-based COVID-19 surveillance of populations in augmenting the efficacy of diagnostic testing, which can suffer from sampling biases or timely reporting as in the case of hospitalization census.


Subject(s)
COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.11.20173062

ABSTRACT

In the absence of an effective vaccine to prevent COVID-19 it is important to be able to track community infections to inform public health interventions aimed at reducing the spread and therefore reduce pressures on health-care units, improve health outcomes and reduce economic uncertainty. Wastewater surveillance has rapidly emerged as a potential tool to effectively monitor community infections for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), through measuring trends of viral RNA signal in wastewater systems. In this study SARS-CoV-2 viral RNA N1 and N2 genes are quantified in solids collected from influent post grit solids (PGS) and primary clarified sludge (PCS) in two water resource recovery facilities (WRRF) serving Canadas national capital region, i.e., the City of Ottawa, ON (pop. {approx} 1.1M) and the City of Gatineau, QC (pop. {approx} 280K). PCS samples show signal inhibition using RT-ddPCR compared to RT-qPCR, with PGS samples showing similar quantifiable concentrations of RNA using both assays. RT-qPCR shows higher frequency of detection of N1 and N2 genes in PCS (92.7, 90.6%) as compared to PGS samples (79.2, 82.3%). Sampling of PCS may therefore be an effective approach for SARS-CoV-2 viral quantification, especially during periods of declining and low COVID-19 incidence in the community. The pepper mild mottle virus (PMMV) is determined to have a less variable RNA signal in PCS over a three month period for two WRRFs, regardless of environmental conditions, compared to Bacteroides 16S rRNA or human eukaryotic 18S rRNA, making PMMV a potentially useful biomarker for normalization of SARS-CoV-2 signal. PMMV-normalized PCS RNA signal from WRRFs of two cities correlated with the regional public health epidemiological metrics, identifying PCS normalized to a fecal indicator (PMMV) as a potentially effective tool for monitoring trends during decreasing and low-incidence of infection of SARS-Cov-2 in communities.


Subject(s)
COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.16.206458

ABSTRACT

Antiviral strategies to inhibit Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) and the pathogenic consequences of COVID-19 are urgently required. Here we demonstrate that the NRF2 anti-oxidant gene expression pathway is suppressed in biopsies obtained from COVID-19 patients. Further, we uncover that NRF2 agonists 4-octyl-itaconate (4-OI) and the clinically approved dimethyl fumarate (DMF) induce a cellular anti-viral program, which potently inhibits replication of SARS-CoV2 across cell lines. The anti-viral program extended to inhibit the replication of several other pathogenic viruses including Herpes Simplex Virus-1 and-2, Vaccinia virus, and Zika virus through a type I interferon (IFN)-independent mechanism. In addition, induction of NRF2 by 4-OI and DMF limited host inflammatory responses to SARS-CoV2 infection associated with airway COVID-19 pathology. In conclusion, NRF2 agonists 4-OI and DMF induce a distinct IFN-independent antiviral program that is broadly effective in limiting virus replication and suppressing the pro-inflammatory responses of human pathogenic viruses, including SARS-CoV2. One Sentence SummaryNRF2 agonists 4-octyl-itaconate (4-OI) and dimethyl fumarate inhibited SARS-CoV2 replication and virus-induced inflammatory responses, as well as replication of other human pathogenic viruses.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
6.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-31855.v1

ABSTRACT

Antiviral strategies to inhibit Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) and the pathogenic consequences of COVID-19 are urgently required. Here we demonstrate that the NRF2 anti-oxidant gene expression pathway is suppressed in biopsies obtained from COVID-19 patients. Further, we uncover that NRF2 agonists 4-octyl-itaconate (4-OI) and the clinically approved dimethyl fumarate (DMF) induce a potent cellular anti-viral program, which potently inhibits replication of SARS-CoV2 across cell lines. The anti-viral program extended to inhibit the replication of several other pathogenic viruses including Herpes Simplex Virus-1 and-2, Vaccinia virus, and Zika virus through a type I interferon (IFN)-independent mechanism. In addition, induction of NRF2 by 4-OI and DMF limited host inflammatory responses to SARS-CoV2 infection associated with airway COVID-19 pathology. In conclusion, NRF2 agonists 4-OI and DMF induce a distinct IFN-independent antiviral program that is broadly effective in limiting virus replication and suppressing the pro-inflammatory responses of human pathogenic viruses, including SARS-CoV2. One Sentence Summary: NRF2 agonists 4-octyl-itaconate (4-OI) and dimethyl fumarate inhibited SARS-CoV2 replication and virus-induced inflammatory responses, as well as replication of other human pathogenic viruses.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL